
F 

;., NASA Contractor Report 3790 

Creep-Rupture Reliability Analysis 

Alonso  Peralta-Duran  and  Paul H. Wirsching 

NASA 
CR 
3790 
c.1 

GRANT NAG341 
MARCH 1984 

LOAN COPY: RETURN TO 
AFWL TECHNICAL LiORARY 
KIRTLAEJD AFB, N.M. 87'117 



TECH LIBRARY KAFB, NM 

NASA Contractor Report 3790 

Creep-Rupture  Reliability Analysis 

Alonso Peralta-Duran  and  Paul H. Wirsching 
The University of  Arizona 
Tucson, Arizona 

Prepared for 
Lewis  Research  Center 
under  Grant  NAG3-41 

National Aeronautics 
and Space Administration 

Scientific  and  Technical 
Information  Office 

1984 





iii 

LIST OF SYMBOLS 

A, B and m = Parameters  of  the  exponential  model 

A, B and m = Best  estimates  of A and B respectively 
A & A  

C = Larson-Miller  constant 

c*,  C$, cr, 
= Coefficient  of  variation  of A ,  JI, R, Ra, S,  and T respectively 

= Exponent  of  the  exponential  model 

= Best  estimate  of m 

= Number  of  data  points 

= Time  temperature  parameter 

= Probability  of  failure 

= Material  strength 

= Actual  material  strength 

= Median  of R 

= Median  of  Ra 

= Applied  stress 

= Median  of S 

= Sample  standard  deviation 

= Temperature OF 

= Time-temperature  parameter 

= Service  life 

= Median  of T 

= Manson-Haferd  constant 

= Time  in  hours 

= Manson-Haferd  constnat 

= Transformation  variables 
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LIST OF GREEK SYMBOLS 

B = Safety  index 

@ = Standard  normal cdf 

A Y = Variables  which  quantify the bias  of  the model 

A Y = Mean of A and Y respectively 

A ‘4 = Median of A and Y respectively 

” 

% %  

% = Mean  value  (subscript  denotes  random  variable) 

Ox = Standard  deviation  (subscript  denotes  random  variable) 



INTRODUCTION 

In  1952  a  new approach  to  the  correlation  and  extrapolation  of  creep- 

rupture  data  was  introduced [l]. The  approach,  called  the  time-temperature 

parameter  (TTP)  method,  combines  time  and  temperature  into  a  single  expres- 

sion  to  collapse  a  family  of  isothermal  curves  into a single  one. The re- 

sulting  curve  is  called  the  "master  curve." The method  assures  that  for  a 

given  stress  level,  rupture  (or  excessive  deformation)  will  occur  at  any 

time  and  temperature  combination  which  produces  a  value  which  corresponds 

to  the  value  of  the  TTP  at  that  stress.  Various  forms  of  the  TTP  expression 

have  been  introduced.  Often  mentioned  in  the  literature  are  the  Larson- 

Miller  parameter  introduced  in  1952  [l];  the  Manson-Haferd  parameter  introduced 

in  1953  [2];  and  the  Orr-Sherby-Dorn  parameter  proposed  in  1954  [3]. 

Another  approach  is  the  Minimum  Commitment  Method,  suggested  by  Manson  in 

1968 [ 4 ] .  This  method  avoids  forcing  the  data to fit  a  specified  TTP.  In- 

stead  it  allows  the  best  fitting  parameter  to  be  used.  And  if  none  of  the 

known parameters  best  fit  the  data,  it  is  capable  of  developing  a  new  param- 

eter. 

Over  the  years,  significant  consideration  has  been  given  to  both  physics 

and  mathematics  in  the  development  of  TTP's.  Special  emphasis  has  been  in 

the  development  of  methods  for  the  calculation  of  empirical  constants  for  the 

parametric  expressions,  e.g.,  the  methods  presented  by  Conway [5]. Develop- 

ment  of  a  functional  relationship  between  strength  and  parameter  values, 

i.e., an  analytical  representation  of  the  master  curve  has  also  been 

pursued [ 6 ] .  Simultaneously,  studies  have  been  made to assess  the  effective- 

ness  of  the  parameter  regarding  correlation,  interpolation  and  extrapolation 

of  the  experimental  data  (e.g.,  Goldhoff [7]). The  present  study  applies 
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probabilistic  design  theory  to  creep-rupture  data  analysis,  bringing  state 

of the  art  methods  to  the  design  of  components  under  creep. It  focuses 

m the  development  of an analytical  representation of the  master  curve, 

the  calculation  of  the  parameter  constants,  and  the  assesment  of  the  ef- 

fectiveness  of  the  parameters  regarding  correlation  and  extrapolation  of 

the  data.  The  Larson-Miller  (LM)  and  the  Manson-Haferd (MH) parameters 

are  used  in  this  study,  but  the  methods  presented  could  apply  to  any  of  the 

TTP's. The  Larson-Miller  parameter is given  by  the  expression 

and  the  Manson-Haferd  parameter, 
T - T  

where  T  is  temperature  in OF, t is  time  in  hours. C, Ta, and  log 

are  corresponding  parameters  or  empirical  constants  established  by  the  data. 

Iota 

The  goal  of  this  study  was  to  develop  a  statistical  model  for  describing 

creep  strength  of  a  material  using  the  TTP  concept.  This  model  should 

quantify  scatter  in  material  behavior  as  well  as  modelling  error.  Moreover, 

the  model  should  be  able  to  fit  into  a  reliability  format  in  which  due 

consideration  is  given  to  all  sources  of  uncertainty.  Proposed  herein  is 

a  lognormal  model  for  creep  strength  and  a  lognormal  format  for  the  general 

reliability  problem. 

CREEP  STRENGTH AND THE MASTER  CURVE 

Probabilistic  design  (or  mechanical  reliability)  refers  to  the  process 

of  quantifying  uncertainty,  and  then  making  decisions so that  the  risk  is 
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less  than an  acceptable  value.  Risk  is  assumed  herein  to  be  synonymous 

with  probability of' failure.  Failure  of  a  component  under  creep  can  be 

defined  as (a) the  event  that  time  to  failure  is  less  than  the  intended 

service  life,  or (b) the  event  that  creep  strength  R  is  less  than  the  applied 

stress S, i.e., .(R<S). The  latter  definition  is  adopted  here.  Figure 1 

illustrates  the  baslc  problem.  Both  creep  strength  and  applied  stress  are 

considered  to  be  random  variables.  The  risk  or  probability  of  failure  is 

defined as 

pf = Pr (R < S> (3)  

To  evaluate p it is necessary  to  establish  the  statistical  distribution of 

R and S. The  process of development of the  functional  relationship  between 

strength  and  the TTP  also  addresses  the  problem  of  translating  the  creep- 

rupture  data  into  a  statistical  distribution of R. The  basic  relationship 

proposed  here  for  creep  strength  is  called  the  "exponential  model," 

f' 

loglOR = A + BPm ( 4 )  

A ,  B, and IUI are  parameters  to  be  determined  from  the  data. 

Note: In  the case of the LM parameter  the  value  of  the  parameter P used 

in  the  exponential  model  is  in  thousands,  while  for  the MH parameter  the 

absolute  value  of P is  used. In the  range  of  interest, P is  a  negative 

valued  function  which  can  not  be  raised  to  a  rational  power. 

The  median  curve  of R given P can  be  established  by  a  least  squares 

analysis. The  model  parameters A ,  B and m are  calculated  by an iterative 

procedure.  Note  that  if  m  is  considered  a  constant,  best  linear  unbiased 

estimates  of  the  parameters A and  B  can  be  calculated  by  applying  a  least 
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Stress 
Distribution- 

Strength  Distribution 

+ Master  Curve 
(The  Median o f  + R given P) 

Time  Temperature  Parameter,  P = P(t, T) 

Figure 1. An  Illustration o f  the  Basic  Creep  Reliability Problem. 

. I 



squares  analysis  to  a  linearized form of the  exponential  model 181. Set 

Y = log loK ( 5 )  

x = Prn 

then  the  exponential  model  becomes 

Y = A +  BX (7)  

The  creep-rupture  data  (Ri,  Pi)  can  be  expressed  as  (yi, xi>, i = 1,n 

using  Eqs. 5 and 6 .  The  least  squares  line  is  defined  here  as  those  values 

of A, B and  m  (denoted as A, B, and  m)  which  minimize  the  sample  standard 

deviation s.  The  sample  standard  deviation  is 

A , .  ,-. 

, . 2  J * n - 2  

c (Yi - Yi) 
i- 1 

s =  

where 

'i = value of ith point  with  coordinates  (yi,  xi), 

n = number of data  points. 

ESTIMATION OF THE EXPONENTIAL  MODEL  PARAMETERS AND EVALUATION OF THE  TTP 
CONSTANTS 

The  basic  criterion  is  that  the  best  estimates of all of these  material 

dependent  constants  are  those  which  minimize  the  sample  standard  deviation, S. 

The  numerical  procedure  is  as  follows  (using  Larson-Miller  as  an  example): 
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1. 

2. 

3. 

4 .  

5. 

6 .  

7. 

Choose  an  initial  value  of  C. 

Choose an initial  value  of  m. 

Use  the  simple  least  squares  analysis  to  compute A and B. 

Compute s (Eq. 8 ) .  

Repeat  steps 2 through 4 until  an m is  found  (corresponding  to  your 

initial  choice  of  C)  which  minimizes s .  

Going  back  to  step 1, repeat  the  process  using  another  value  of  C. 

Finally,  this  procedure  produces a minimum s as a function  of  C. 

The  "best"  estimate of C is  defined  as  that  value  which  corresponds 

to  the  minimum  value  of s .  The  corresponding  values A, fi, and 

are  estimates of m, A, and B respectively. 

4 A 

This  procedure  is  easily  extended  to  the  case  of  two  (or  more)  constants. 

For  the MH parameter,  steps 1, 6 ,  and 7 are  extended  to  accomodate  two 

constants. 

Finally,  the  "optimum"  master  curve  is 

A 

l0g1()fi = ii + ipm 

Examples  of  this  analysis  applied  to a sample  of n = 95 Incoloy 625 data 

are  provided  in  Figs. 2 (for LM) and 3 (for MH) . The  coherence  of  the  data 
to  the  master  curve  is  measured  by  CR,  the  coefficient  of  variation of R 

(praportional  to S: as  given  by Eq. 11 below)  which  defines  the  vertical 

scatter.  The  fact  that  the MH analysis  produces a slightly  lower  CR  suggests 

a slightly  better  fit, . . . not  surprising  in  view  of  the  additional  con- 
stant  in  the MH parameter. 

Table 1 is a summary  of  the  results  obtained  from  an  exponential  model 

analysis  for  five  materials.  The  significance of these  results  lies  in 



Fig. 2. Example o f  Proposed Analysis  Procedure  Applied to  Incoloy 625 Creep-Rupture Data  Using 

Larson-IYI 11 e r  Parameter. 

INCOLOY 625 
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Fig.  3. Example o f  Proposed Analysis Procedure  Applied to Incoloy 625 Creep-Rupture Data Using 
the Manson-Haferd Parameter. 

INCOLOY 625 

Sample S i z e ,  n = 95 
Sample S t d .  Dev., s = 4 . 1  E-2 
Coeff. o f  Variation o f  R ,  CR = 9.46% 

T = 594OF 
loglOta = 15 .8  

a 

M-H PRRRMETER 

- 5.7683-03 P 1 .307  



TABLE 1. Summary of Exponential  Model  Analysis.* 

INCOLOY ~ 95 
625 

UDIMET  105 
500 

ASTROLOY  33 

CR-MO  33 

RENE 41 37 

*"Short  term"  anc 

Parameter LT 
~~ 

LM 
594,  15.80 MH 
25.05 

-410,  27.05 MH 
22.86 LM 

LM 
618,  12.86 MH 
19.56 

LM 19.18 
MH 618,  10.70 

LM 
614,  12.21 MH 
19.09 

"long  term"  data  were  pooled j 

1.790 
1.307 

10.68 4.62  -1.7963-09 3.461 
9.46 4.10 -5.7683-03  2.637 

3.877 
3.857 

8.18  3.55  -2.591E-07  2.548 
8.07  3.50  -4.8603-08  2.534 

I I I I 

4.031  2.485  -1.910E-07  6.28 
2.186 I 2.375 I -3.8223-05 I x::: I 5.68 

6.928  1.823  -1.0773-11  1.17  2.69 
2.534 I 1.755 I -1.1963-05 I 1.42 I 3.28 

I I I I 

I 
4.205  2.563  -1.4073-07  4.31 
2.119 1 2.445 1 -5.9813-05 I i::: 1 4.69 

I I I I 

tn the  analysis. 

W 
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the  demonstration  that  typical  values  of  CR  are  less  than 10%. This  value 

includes  both  scatter in material  behavior  and  modelling  error  associated 

with  the  use  of  a  TTP.  Note  that  in  comparison,  scatter  in  room  temperature 

static  properties  for  most  metallic  materials  is  characterized  by  coefficients 

of  variation of 5 to 10%. Finally,  note  that  the  R-P  data  for  all  the 

materials of Table 1, when  plotted,  would  exhibit  the  same  coherence  to 

the  master  curve  as  those of Figs. 2 and 3.  

A STATISTICAL  MODEL  FOR  CREEP  STRENGTH 

Having  estimated  the  model  parameters  we  proceed  to  construct a statis- 

tical  model  of  creep  strength R. In  general,  for  probabilistic  design 

the  model  parametera A ,  B and.  m  could  be  considered  as  correlated  random 

variables  representing  the  scatter  in  the  data  as  well  as  modelling  error. 

Ensuing  reliability  analysis,  however,  would  be  complicated. It is  possible 

to  significantly  simplify  the  analysis  by  assuming  that A is  the  only  random 

variable. It will  account  for  al.1  material  variability  and  modelling error; 

B and  m  are  treated  as  constants.  Estimates of the  statistics of A are  the 

mean u = A and  standard  deviation uA = s. If A is  assumed  normally  distributed, 

then R is  a  lognormally  distributed  random  variable  with  statistics  given 

h 

A 

by [IO], 

A 

Median  of  R = R = log  (A + B*Pm) % -1 A A 

10 

The  coefficient  of  variation (COV) of R, 
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Note  that  the  master  curve of Fig. 2 is  in  fact  R.  Also  note,  as  stated 

above,  that cR = 12.3%, given  on  the  figure,  is  a  measure Of the  vertical 

scatter. 

'L 

This  form  of  computing CR ignores  the  statistical  scatter  of  the  esti- 

mates.  However,  it  has  been  found  that  in  the  elementary  least  equares 

case,  the  distribution  of  the  estimators  does  not  play  a  significant  role 

for  sample  sizes  of  roughly  n > 30 [lo]. For  the  many  available  creep- 

rupture  data  sets  of  this  size  or  larger,  the  statistical  distribution 

of  the  estimates  is  not  expected  to  be  significant. 

BIAS AND UNCERTAINTY  IN  PREDICTING  LONG  TERM  BEHAVIOR FROM SHORT  TERM  DATA 

The  ability  of  a  TTP  to  predict  long  time  behavior  (e.g., 20 to 40 

Years)  from  short  time  data  (e.g.,  less  than 1 year)  is  of  special  interest 

to  designers.  A  parameter  which  provides  accurate  predictions  of  long 

time  properties  would  improve  current  design  practices  by  reducing  the 

risk  and/or  avoiding  overdesign.  The  ability  of  a  TTP  to  predict  long 

time  behavior  can  be  measured  by  (a)  constructing  a  model  using  short 

term  data  only,  and (b) comparing  long  term  data  with  the  model  predictions. 

Define A as  the  ratio  of  observed to predlcted  behavior; A f.s an  index 

which  defines  the  quality of a  model.  Following  is  a  mathematical  predic- 

tion  of A in a  form  which  is  suitable  for  probabilistic  design  purposes. 

Define , 

ROBS (i) 

%RE (i) 

= Observed  strength  (long  term  data)  of ith specimen 

= Predicted  strength  of  ith  specimen  (model  based  on  short 
term  data  only) 

n = number  of  long  term  data  points 
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Define A associated  with  the  ith  specimen  as, 

But A i ,  in  general,  will  be  different  for  each  test  specimen.  Therefore, 

A will  be  a  random  variable.  Compute  the  sample  mean  and  sample  standard 

deviation  as, 

i=l 

It  is  assumed  that A will  have  a  lognormal  distribution.  In  fact,  statis- 

tical  tests  (not  reported  here)  show  that A seems  to  follow  an  approximate 

lognormal  distribution  for  many  data  sets.  The  median  and  COV  of a lognormal 

A will  be  respectively  [lo], 

C ,, = sA /A 
- 

Note  that Chmeasures both  scatter  in  material  behavior  and  strength 

modelling  error.  The closern is to unity  and  the  smaller  is sA , the  better 

the  predictions. If A < 1, then  the  model  has  a  tendency  to  overestimate 
- 

long  time  strength.  For 1\ > 1 the  strength  is  underestimated. 
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Tables 2 and 3 summarize  an  exercise  to  study  the  behavior  of A from 

typical  creep-rupture  data.  Models  based  on  the  short  term  data  are sum- 

marized  in  Table 2 for  various  data  sets.  The  bulk  of  the  short  term 

data  is  less  than 1000 hours,  with  only a few  points  between 1000 and 

3500 hours.  Then  the  mean  and COV of  the  bias  in  predicting  long  term 

behavior  for  each  data  set is summarized  in  Table 3. Lives  of  most  of 

the  long  term  data  were  from 12 to 18 months.  The  short  term  and  long 

term  data  used  here  was  provided  by  Goldhoff (7). Note  that  the MH param- 

eter  seems  to  perform  much  better  than  the LM parameter  as  evidenced  by 

the  fact  that 7 is  consistantly  closer  to  one. 

RELIABILITY ANALYSIS 

In  general  reliability  analysis,one  should  consider  all  sources  of 

uncertainty  including  data  scatter  as  well  as  the  bias  and  distribution of 

modelling  error.  Material  data  scatter  is  described  by  the  random  variable 

A in  the  creep  rupture  analysis.  But  the  bias A contains  both  scatter 

in  material  behavior  and  modelling  error.  In  addition,  temperature T 

and  stress S can  be  treated  as  random  variables  reflecting  uncertainties 

in  the  environment  as  well  as  the  analysis.  The  goal  of  reliability 

analysis  is  to  synthesize  statistical  information  to  compute  risk. 

For a practical  reliability  analysis  we  need  an  estimate  of  the 

I 1  in  service"  strength  which  accounts for data  scatter  as  well  as  predictive 

capabilities  of  the  model.  Define  the  actual  strength  of  the  material 

Ra 9 

R = Y R  a 



TABLE 2. Summary of the  Analysis of Short  Term  Data. 

I 

Material A m C Parameter N 
(short 

1% t, time) 
Ta (OF) 9 

I#%oloy 
2.377 1.221 815,  13.40 MH 

3.698  1.616 32.11 LM . 78 
625 

UDIMET 2.534  3.954  24.11 L? 93 
500 MH 2.540 4.108 -545,  29.24 

LM 
500 

26.27 L4:: 2.462 
-554,  30.50  2.470 

I 

ASTROLOY  2.324 5.084 24.60 LM 21 
MH 2.236 2.853  600,  14.71 

RENE 41 2.505  4.582  20.34 LM 26 
MII 2.395 2.360 609,  12.08 

CR-MO 1.852 6.484 20.57 LM 23 
MH 1.756  2.592  618,  10.17 

HASTELLOY 4.683 0.940  18.59 LM 29 
X MH 2.905 0.834  614,  11.08 

r 
316-SS 2.337 2.746 17.93 LM 28 

MH 2.106 1.414  618,  10.06 

L-605 2.167 3.210 18.79 LM 76 
MH 2.050 1.761 583,  17.27 

A1-1100 2,274 1.056  18.04 LM 53 
MH 2.355 1.056 -499,  22.92 

B 

-2.7373-03 
-7.5263-03 

-1.549E-07 
-1.749E-08 

-1.6433-08 
-2.5173-09 

-9.5703-10 
-2.2403-06 

-2.4763-08 
-1.8083-05 

-3.701E-11 
-7.8783-06 

-1.0823-01 
-3.7773-02 

-5.7143-05 
-1.4443-03 

-5.4763-06 
-2.1133-04 

-8.968E-02 
-3.5693-02 

Time  less 

I I 
1 I t 

4.19  9.68  145 1 3.84 I 8.86 I 

1.88 

1.69 
1.83 

0.867 
0.843 

3.54 
3.54 

1.26 
1.35 

1.92 
2.50 

I 1.34 
1.42 

8.30  139 
8.34 

3.72  23 
4.43 

3.89 32 
4.22 

2.00 90 
1.94 

8.16  37 
8.18 

2.89  38 
3.12 

4.42 40 
5.75 

3.08 17 
3.28 
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TABLE 3 .  Statistics of A Exhibited  by  the TTP's. 

MATERIAL Number of Data Points LM I MH 

INCOLOY 625 

UDIMET 500 

UDIMET 500 

ASTROLOY 

RENE 41 

CR-MO 

HASTELLOY-X 

316-SS 

L-605 

A1-1100 

x 
0.477 

0.928 

0.904 

0.884 

0.971 

0.967 

0.920 

1.037 

0.668 

1.036 

~ "" 

. .  

~~ ~ ~ 

~~~ - 

C %  n ji C %  A 
Short 
Time 

15.6 

21 8.65  0.928  9.52 

66 6.93  0.939  7.69 

93 3.95 0.972  5.27 

78 12.00 0.941 

15.6  0.993  19.0 

6.07  1.055 
. .  

Long 
Time 

17 

12 

37 

12 

11 

10 

18 

10 

28 

11 
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where Y is  a  random  variable  which  accounts  for  bias  and  uncertainty of 

modelling  error  associated  with  using  a  TTP  to  extrapolate. R is  the  predicted 

strength  of  the  material  as  calculated  from  the  exponential  model, Eq. 4, as 

R = loglo (A + BPm) -1 
(18) 

where P = P(t  ,TI. R is  a  random  variable  because A and T are  random  vari- 

ables.  Note  that  if  T  is  assumed  to  be  constant  and A is  normally  dis- 

tributed,  then  R  would  have  an  exact  lognormal. 

The  statistics  of '4 are  established  as  follows.  First  it  is  assumed 

that  T = constant  in  the  data  used  to  compute A and q. Then  assume  that 'L 

Y is  lognormal.  R  will  have  exact  lognormal  with  statistics a 

'L ' L ' L  
Median,  Ra = Y R 

cov, c = /(1 + CG) (1 + Ci) - 1 (20) 
Ra 

Nowh contains  both  data  scatter  and  modelling  error so that  CR = CA. 

Also  note  that 
a 

Comparing Eqs .  19 and 2 1  and  solving  for CA in Eq. 20, the  statistics 

for A are ' L ' L  

Y = A  

c 
1 + CA 

"1 + CR 

What  we  have  done  is  to  extract  uncertainty  due  to  modelling  error  from 

A .  Thus,  C  describes  modelling  error  in  the  use  of  the  TTP. 
Y 
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Consider  a  simple  example  which  illustrates  how  to  separate  material 

variability  from  modelling  error  associated  with  using  a  TTP  to  extrapolate 

to  long  t2mes.  Use  of  the LM parameter on Incoloy  625  is  demonstrated. 

CR is  established  from  short  term  data  as  0.0968  (See  Table 2). From  long 

term  data  (Table 3 ) ,  = 0.477 and CA = 0.156.  The  median  of A is  computed 

from Eq. 15  as A = 0.471. Thus, Y = 0.471. From Eq. 22,  Cy = 0.121. 

Thus,  statistics  on  modelling  error  and  material  behavior  are  separated. 

% % 

It should  be  noted  that C >, C with  equality  when  there  is no modelling A R  

error  due  to  extrapolation.  The  fact  that CR exceeds C in  some  of  the 

data  sets  of  Table 2 and 3 ,  suggests  that  sample  sizes  were  inadequate. 
A 

Furthermore,  note  that  CR  contains  some  modelling  error.  The  use  of  a 

TTP  to  describe  a  complex  material  phenomena  suggests  only  an  approxima- 

tion  to  physical  reality.  However,  because  the  values of C  (less  than 10%) 

do not  significantly  differ  from  those  of  other  static  properties,  it  is 
R 

likely  that  this  component  of  modelling  error  is  small. 

If both  the  distributions  of  stress, S and R are  lognormal,  a  closed a 

form  expression  for  probability  of  failure  is  available [lo]. The  proba- 

bility  of  failure  is 

Pf = @ (-5) 

where 0 is  the  standard  normal  cdf,and f3 is  the  safety  index,  as  given  by 

% 

S and  Cs  are  the  median  and COV of S respectively. 
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In the  more  general  case  where  T  is  also  considered to be  a  random  vari- 

able,  reliability  analysis  becomes  much  more  difficult.  Techniques  such  as 

Monte  Carlo  or  Rackwitz-Fiessler  method [ lo ,  121  must be employed  to  relate 
risk  to  the  design  parameters. 

It is  important  to  note  that  computed  values  of p should  be  considered 
f 

as  "notional"  values  of  the  probability  of  failure.  Because  of  the  many 

uncertainties  and  assumptions  and  because  risk  levels  are so low,  it  may  be 

imprudent  to  argue  that pf defines  risk  levels  in  an  actuarial  sense. 

DEMONSTRATION  OF  RELIABILITY  ANALYSIS 

Example 1. It is  required  to  design  a  tension  element  to  the  following 

specifications  (a)  the  temperature  is  llOO'F (593'C), (b)  the  life of the 

component  is 40 years (350,000 hrs),  (c)  the  applied  load  is  lognormally 

distributed  with  statistics P = 10 kips (44 .48  KN) and Cp = 25%. The  materi- 
QJ 

al  considered  is  Hastelloy X. The  problem  is  to  find  the  component's  minimum 

cross-sectional  area A if  the  maximum  allowable  risk  is p = 10 . From  normal 4 
f 

tables  the  target  safety  index  is B = -0-l(pf) = 3.72 .  In  this  problem 

both  the LY and MH parameters  will  be  used.  The  relationship  of  load  to 

stress  is S = P I A ,  hence C s  = Cp = 25%. 

a)  Larson-Miller  Analysis 

The  optimized  form  of  the LM parameter  for  Hastelloy X is  given 

by (See  Table 2) 

P = (1100 + 46O)(loglO 350,000 + 18.59)  = 37.65 thousands 



19 

Using   the   da ta   f rom  Table  2 i n  Eq. 4 ,   p red ic t ed   s t r eng th  is 

loglo% = 4.683 - 0.1082  (37.65)  0.940 

3 = 25.48 ks i  (175.7 MPa) 

The  median  and COV o f   t h e   a c t u a l   s t r e n g t h  Ra is o b t a i n e d   u s i n g   t h e   d a t a  

of Table  3. Note   tha t  (a) both   model l ing   e r ror   and  material behavior  

are included  and  (b)  the  median  of A is  obta ined   us ing  Eq. 15. 

CRa = CA = 15.6% 

,-b 
Ra=AR =0.909  25.48  ksi  = 23.16 k s i  (159.67 MPa) 

Rearranging Eq. 24, is given  by 
% 

Ra 

exp  {BIkn(l  + CRa) (1 + C , ) l  1 
51= 2 2 %  

Then, 

?J= 23.16 
2 2 %  = 7.82 k s i  (53.91 MPa) 

exp {3..72[kn(l + .156 ) (1 + .25 ) ]  1 

For a s a f e   d e s i g n   t h e  minimum requ i r ed  area is 

lo = 1.28in  (8.25 cm ) 2 2 
A ' s = 7 x 2  

b) The  Manson-Haferd Analys is  

f o r   H a s t e l l o y  X is  given  by (see Table  2) The MH parameter 

P =  

Using  data  from  Table 2 i n  Eq. 4 ,   p red ic t ed   s t r eng th  is 

10% ,8 = 2.905 - 3.7773-02  (87.8) 0.834 

% 
R = 21.25 k s i  (146.51 "a) 
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The  median  and  COV  of  the  actual  strength  is  obtained  from  Table 3. 

A is  computed  using  Eq.  15. 
% 

CRa = c, = 19.0% 

%a = A R = 0.979 21.25  ksi = 20.8  ksi  (143.40  MPa) 
% %  

Then,  as  above,  the  maximum  allowable  stress  is 

n.8 20.8 s =  = 6.55  ksi  (45.18 ma) 
exp  I3.72  [h(l + .1g2)(1 + .2l2)I4} 

For  a  safe  design,  the  requirement  on  the  area  is 

2  2 A 1 PIS = 1016.55 = 1.53  in  (9.85  em 

We  are  incapable of providing  a  commentary  at  this  point  regarding 

the  poor  agreement  between  the  design  as  established  by  each  parameter. 

From  intuition,  however,  it  seems  reasonable  to  place  more  confidence  in 

MH simply  becuase  it  contains  two  (rather  than  one)  empirical  constants. 

Example  2. As an  extension  to  Example 1, assume  now  that  uncertainties 

in  the  temperature  analysis  are  to  be  considered. It is estimated  that 

the  median  (best  estimate) of T  is llOO'F  and COV of T  is  5%.  The  member 

chosen  has  a  cross  sectional  area  of 1.60 in2  (10.3  cm ) , larger  than  the 

1.53  in2  (9.85  cm ) required  in  the  constant  T  case.  Does  the  design 

2 

2 

satisfy  the  basic  requirement  that  the  target  safety  index, 8 > 3.72? 

A closed form solution  is  not  available. To solve  this  problem,  a 

numerical  method,  the  Rackwitz-Fiessler  (R-F)  method  will  be  employed 

[lo,  121.  The  computer  program  requires  the  limit  state  as  input. 

(S = YR) = (S = Y log;; {A + B [ (T + 460) (loglot  18.59)]m} 
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S, A and T are  random  variables. It is  clear  that  the  computation 

of  the  probability  of  failure  event  would  be  most  difficult  by  classical 

methods. 

The  computations  are  summarized  in  Table 4 .  The  computed  safety 

index, B = 3 . 3 3 ,  is  less  than  the  target  safety  index f 3  = 3 . 7 2 ,  so the 

design  is  considered  to  be  unsafe. It is  interesting  to  note  that  if 

we let C + 0 (T = ?, a constant),  then  the  safety  index  is f3  = 4 . 5 0 .  

Clearly  reliability  is  sensitive  to  uncertainties  in  T. 

0 

T 

We  can  also  compute  the  notional  probability  of  failure  as 

For 6 = 3 . 3 3 ,  pf = 4 . 3 6 E - 4 ,  and  for f 3  = 4 . 5 0 ,  pf = 3.44E-6 .  

CONCLUSIONS 

A general  method  for  reliability  analysis  of  creep  rupture  data  is 

presented.  The  method  employs  the  time-temperature  parameter  (TTP)  concept. 

An exponential  mode1,log R = A + B P  ,relating  strength R, to P, the 
TTP,  was  shown  to  provide  a  good  fit  to  creep-rupture  data.  Evidence of 

the  quality  of  the  exponential  model  is  provided  by  the  low  values  of  the 

coefficient of variation  of R in  Table 2 (typically  less  than  10%).  Further- 

more,  the  exponential  model  fits  well  into  a  probabilistic  design  format. 

m 
10 

In  general,  the  assumption  that  all  of  the  statistical  scatter  of 

the  data  can  be  lumped  into A is  valid  only  when  the  data  is  homoscedastic 

(constant  scatter  band).  This  data  is  not  always  homoscedastic  when  the 

Universal  constants  associated  with  each  TTP  are  used. 



22 

(a) TABLE 4. Summary  of  the  Input  and  Output  of  the UA Reliability  Program 
to  Calculate B. 

0 Data 
~~ 

Variable 0 COV% Median Mean Distribution 

S 25 .O 6.25 Lognormal - 
A 6) 

~~~ . 

Normal 0.382 8.2 4.683 
~~ ~ 

T 5.0 1100 Lognormal 

Y 13. 3(d) 0.909(c) Lognormal 

0 Safety  Index, B = 3.327 

Notional  Probability  or  Failure, Pf = 4.40E-4 

0 Design  Point  (approximately  most  probable  value on  the  limit  state  function; 
close  to  the  peak of the  joint  probability  density  function 
of the  design  factors) * s = 7.57 

A* = 4.674 

T = 1329 

Y = 0.857 

* 
* 

Notes 

(a) This  program  has  the  option  of  using  the  Hasofer-Lind,  Rackwitz-Fiessler 
or  Chen-Lind  method  for  computing  the  generalized  safety  index. 

(b) Hastelloy X; See  Table 2. 

(c) Y = A ;  and A obtained  using  Eq. 15 and  data  of  Table 2. 
% %  % 

(d)  Computed  using  data  of  Tables 2 and 3 and  Eq. 22. 
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The  assumption  that A is normally  distributed  is  a  matter  of  con- 

venience  for  the  reliability  analysis.  While  no  formal  goodness  of  fit 

test  was  used,  the  normal  assumption  for A seems  to  be  very  reasonable 

on  the  basis  of  visual  inspection  of R-P plots. 

Investigation  of  the  bias in predicting  long  term  behavior  from 

short  term  data  of  both  the LM and MH parameters  suggest  that  both  do  a 

fair  job.  But  no  general  trend  was  observed.  Probability  plots  of A ,  

and  hence Y ,  suggest  that A (and Y )  follows  a  distribution  close  to a log- 

normal. 

Finally,  failure  is  not  always  defined  as  rupture. It can  be  defined 

as  excessive  deformation.  When  this  is  the  case,  a  similar  approach  to 

the  one  presented  above  is  possible.  Time  to  failure  would  indicate  time 

to  achieve  a  predetermined  deformation,  say 1, 2, or 5% creep,  Creep 

strength  would now be  defined  as  stress,  e.g.,  for 1, 2, or 5% creep 

strain.  Fig. 4 illustrates  the  master  curves  for  creep  rupture  and 1% strain. 

I 



Fig. 4 .  Analysis of 1% Creep Strain Data. Creep Strain Data was Plotted by 

Using  Optimized L-M Constant for Creep Rupture. 
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